m+p Analyzer Basics


Learn the basic functionality of our NVH software product m+p Analyzer. We will start with basic vibration data display and progress to data handling, filtering, and more complex features like post-processing and advanced visualization of data. Features will be illustrated by animated graphics.

Issue 1: Basics of 2D charts

m+p Analyzer offers four different types of charts for specific data analysis needs:
- 2D Single chart
- 2D Multi-chart
- 3D Waterfall chart
- Colormap chart

In the first issue we will explain 2D chart functionalities including chart layout, online data display and basic analysis features.

Basic Chart and Positioning

Single and Multi-charts are the key tools to use when acquiring and reviewing measurement data. The single chart can display up to 256 traces in a single diagram and is continually updated during a measurement. The multi-chart tool is useful for a more structured display of data. Scaling may be applied to several charts at once and groups of traces can be displayed together in separate sub-charts. Similar to a webbrowser, all charts may be arranged freely on the working plane either side-by-side or as tabs.

Show example

Single Chart with Differently Scaled Axes

Charts can be configured to show a secondary axis on the right hand side with independent scaling, which streamlines acquisition of data with different units, e.g. acceleration [g] and force [N]. Comparison of signals, such as phase difference between sine waves, can be done automatically online during the measurement.

Show example

Chart Formatting

Both the single and multi-charts are completely customizable. The size and color of titles, legends, annotations and the plot area can be tailored to the user’s preference. The grid and traces may be individually colored and styled.

Show example

Chart Online Display

The 2D chart capability is not limited to the display of time data. m+p Analyzer’s real-time FFT feature allows for online display of different metrics calculated from measurement data. This includes real-time spectra of windowed time signals, histograms, auto- and crosscorrelations, power spectral densities, auto- and crosspower spectra and frequency response functions.

Show example

Chart Axis Display

The display type of the chart may be individually customized to fit the requirements of a given measurement type, e.g. a frequency response function. Common axis types such as real/imaginary, amplitude/phase, logarithmic/phase and dB (referenced)/phase plots are available with different types of scaling such as peak, peak-to-peak and rms.

Show example



Issue 2: Advanced 2D Charts Features

m+p Analyzer offers four different types of charts for specific data analysis needs: 2D Single chart, 2D Multi-chart, 3D Waterfall chart and Colormap chart. The second article of our series „m+p Analyzer basics“ will focus on the advanced functionality of 2D charts.


Chart Overview Zoom

The overview feature is useful when post-processing and reviewing large data sets. It allows to select a zoom region and pan this region in the overview field to get a close-up view of a subset of data.

Show example

Chart Cursors on a Time History

To review the data values at specific time instances, vertical and horizontal cursors may be used. Besides the charts a display with useful metrics at the cursor location is displayed. Multiple cursors may be linked with the "band cursor" feature where slave cursors will move together with the master cursor at a given distance. Together with the "seek to peak" feature, extrema and their relative distances (in time or frequency) may be easily tracked and displayed in the chart legend.

Show example

Chart Cursors on a Spectrum

2D charts offer specifically tailored cursors for the analysis of spectra (basically anything with a frequency axis). The harmonic cursor displays slave cursors at frequency locations of the 1st, 2nd, 3rd, ... harmonic based on the master cursor frequency. The sideband cursor displays slave cursors equally spaced to the left and right around the master cursor.

Show example

Tacho Tool

The tacho tool can be used to extract RPM values from a tacho signal or sine wave. It is a simple tool that is real-time capable in that it can be used at acquisition time. More advanced features "tacho spline fit" and "RPM extractor" are part of the m+p Analyzer "Rotate" toolbox and allow for more complex RPM extraction methods such as smoothing of the extracted RPM signal and extraction of RPM from vibration data. In the following example we will show the basic tacho tool which comes with the 2D chart. Suppose a sine sweep from 20 Hz to 100 Hz was recorded. We can now configure the tacho tool displaying the rotational speed, which - in the case of our sine sweep - yields an RPM range of 1200 to 6000 RPM. The result may either be shown as a cursor on the original data or shown as a new signal "RPM over time". In this example we use a sine sweep, yet any rectangular pulse train - which is typically measured by tachometers - is applicable.

Show example

Reference Traces

Reference traces may be overlaid in the 2D chart to compare previously acquired results to the currently acquired data in real time. Besides showing recorded measurements as a reference, this feature is also useful to show, for example, upper and lower limits when measuring time signals such as forces. In the following example we show how to set up a previously acquired spectrum as a reference trace and perform several impulse response measurements which can then visually compared to the reference response. Tip: Reference traces may be added quickly by holding the "alt" key while dragging and dropping a measurement into the chart.

Show example



Issue 3: 2D Charts – Data Manipulation

In the last issues of our series “m+p Analyzer Basics” we showed basic features of 2D charts such as formatting and positioning and more advanced features such as different types of cursors and reference traces. This issue is dedicated to data manipulation. The m+p Analyzer provides a rich set of data manipulations within packages like "modal analysis", "rotational analysis" and "acoustic analysis". Yet basic analysis features are included in the 2D charts which come with the standard licence and are available to all customers.

Online Calulations

The 2D chart can be configured to perform basic calculations on the data it currently shows. These functions include integration and differentiation in time and frequency domain, octave spectra with A-, B-, C-weighting, orbit plots and many more. All calculations may be chained consecutively in arbitrary order and will be applied during run time. The following animation shows how acceleration data can be integrated to velocity or displacement during the time of measurement.

Show example

Application Example: Orbit Plot of a Journal

For an application example we will use our demonstrator for rotational analysis such as balancing and orbit analysis.

On the left journal we placed two accelerometers to measure vibrations in X- and Y-direction. Within the chart we can now integrate these accelerations twice to get the displacement and then setup an orbit plot. This will show us the movement of the journal in the X-Y-plane during the run-down of the demonstrator.

Setting up the chart

In a real world application, one is typically interested in time histories and spectra as well. In that case we would setup different charts showing the desired metrics. The following animation shows a typical setup and how to export and import such a setup for repeated use.

Exemplary layout